Automated mining of the ALMA Archive in the COSMOS Field (A³COSMOS): Measuring the dust and gas content of thousands of high-z star-forming galaxies

Benjamin Magnelli CEA Saclay

D. Liu, E. Schinnerer, P. Lang, T. M. Wang, S. Adscheid, L. Moser, S. Leslie, P. Oesch, Y. Fudamoto, F. Bertoldi, M. Sargent

Journées de la SF2A — S10 : Dust in galaxies: from the local interstellar medium to distant galaxies — 7-10 June 2022

COSMOS is a blind survey...

...but no full/coordinated ALMA continuum coverage on the horizon

- The ALMA archive is ever-growing, particularly wherever there is rich ancillary data... ...but one needs to continuously keep track of it
- The ALMA archive is well accessible...

• The ALMA archive could provide science-ready coherently-reduced images...

- ...but science-ready product still demands human interaction / expertise / infrastructure
- ...but cataloging should be performed consistently to be added to the COSMOS multi- λ archive

The A³COSMOS team has the expertise and resources to tackle these challenges!

What does the ALMA archive contain?

The ever-growing ALMA archive allows for the "creation" of deep/wide (sub)mm surveys

E.g., the COSMOS ALMA archive contains already enough data to "create" a blind continuum (though not contiguous) survey as deep and large as the to-date largest blind survey conducted with ALMA, i.e., the GOODS-S-ALMA survey @1.1mm (PI: D. Elbaz) LIU+19A

What does the ALMA archive contain?

The ever-growing ALMA archive allows for the "creation" of deep/wide (sub)mm surveys

E.g., the COSMOS ALMA archive contains already enough data to "create" a blind continuum (though not contiguous) survey as deep and large as the to-date largest blind survey conducted with ALMA, i.e., the GOODS-S-ALMA survey @1.1mm (PI: D. Elbaz) LIU+19A

A³COSMOS includes all ALMA data in COSMOS publicly available as of the 2021-08-27: 3231 images in total, coming from 183 ALMA projects

Info Type	Band 3	Band 4	Band 5	Band 6	Band 7	Band 8	Band 9
Number of images	319	95	8	1241	1524	40	4
Sum beam area (arcmin ²) ^a	245.1	33	1.5	159.2	99.20	1.42	0.067
Mean beam size (arcsec) Mean rms noise (mJy beam ⁻¹)	1.94	1.65	2.05	1.17	0.78	0.59	0.20
	0.021	0.030	0.025	0.069	0.138	0.044	0.654
PYBDSF S/N _{peak} > 5.40	128	81	6	802	1146	25	8
GALFIT S/N _{peak} > 4.35^{b}	174	105	9	967	1241	27	6

https://sites.google.com/view/a3cosmos/data

This next release should be online by end of August 2022

The main sequence of star-forming galaxies

What can we explain that star formation in MS galaxies increase by a factor $\times 10-20$ from $z \sim 0$ to $z \sim 4$?

Larger gas content?

Or

Higher star formation efficiency?

The main sequence of star-forming galaxies

What can we explain that star formation in MS galaxies increase by a factor $\times 10-20$ from $z \sim 0$ to $z \sim 4$?

Larger gas content?

Or

Higher star formation efficiency?

Need to assemble large and unbiased sample of high-z galaxies with accurate gas mass measurements:

—> CO line (very expensive even with ALMA) -> dust RJ-tail emission (A³COSMOS)

At high masses (>10^{10.5}), SFR(z) is mostly controlled by the gas fraction, i.e., $\mu_{gas}(z)$, and only in part by SFE(z) LIU+19в

By combining ~700 (sub)mm-detected galaxies from A³COSMOS with ~1000 CO-detected galaxies from the literature, we parametrised the cold molecular gas scaling relations with stellar masses, offset from the MS and cosmic time

By developing an dedicated *uv*-stacking method, we unleash the full capability of the A³COSMOS archive.

Measure for the first time the gas content and extent of a mass-complete sample of >10¹⁰ M_{\odot} MS galaxies up to $z \sim 4$

Down to >10¹⁰ M_{\odot}, SFR(*z*) is mostly controlled by the gas fraction and only in part by SFE(z)

Small gas reservoir -> Accretion of fresh gas from the IGM

At all redshifts and stellar masses, MS galaxies have relatively compact SF extent, with R_e≲2.5kpc.

Main sequence galaxies evolve along a seemingly universal KS relation (slope~1.13)

By developing an dedicated *uv*-stacking method, we unleash the full capability of the A³COSMOS archive.

	Measure for the first time the gas content and extent of a mass-complete sample of >10 ¹⁰ Ma MS galaxies up to z ~4
	Down to >10 ¹⁰ M _{\odot} , SFR(<i>z</i>) is mostly controlled by the gas fraction and only in part by SFE(<i>z</i>)
alaxy	Small gas reservoir —> Accretion of fresh gas from the IGM
20, 71, .23,	At all redshifts and stellar masses, MS galaxie have relatively compact SF extent, with R _e ≤2.5kpc,
4.0	Main sequence galaxies evolve along a seemingly universal KS relation (slope~1.13)

T.M. WANG, BM+22 (IN PREP)

nt and 010 M⊙

rolled SFE(z)

By developing an dedicated *uv*-stacking method, we unleash the full capability of the A³COSMOS archive.

Measure for the first time the gas content and extent of a mass-complete sample of >10¹⁰ M_{\odot} MS galaxies up to $z \sim 4$

Down to >10¹⁰ M_{\odot}, SFR(z) is mostly controlled by the gas fraction and only in part by SFE(z)

Small gas reservoir -> Accretion of fresh gas from the IGM

At all redshifts and stellar masses, MS galaxies have relatively compact SF extent, with R_e≲2.5kpc.

Main sequence galaxies evolve along a seemingly universal KS relation (slope~1.13)

By developing an dedicated *uv*-stacking method, we unleash the full capability of the A³COSMOS archive.

Measure for the first time the gas content and extent of a mass-complete sample of >10¹⁰ M_{\odot} MS galaxies up to $z \sim 4$

Down to >10¹⁰ M_{\odot}, SFR(z) is mostly controlled by the gas fraction and only in part by SFE(z)

Small gas reservoir -> Accretion of fresh gas from the IGM

At all redshifts and stellar masses, MS galaxies have relatively compact SF extent, with R_e≲2.5kpc,

Main sequence galaxies evolve along a seemingly universal KS relation (slope~1.13)

By developing an dedicated *uv*-stacking method, we unleash the full capability of the A³COSMOS archive.

Measure for the first time the gas content and extent of a mass-complete sample of >10¹⁰ M_{\odot} MS galaxies up to $z \sim 4$

Down to >10¹⁰ M_{\odot}, SFR(*z*) is mostly controlled by the gas fraction and only in part by SFE(z)

Small gas reservoir -> Accretion of fresh gas from the IGM

At all redshifts and stellar masses, MS galaxies have relatively compact SF extent, with R_e≲2.5kpc,

Main sequence galaxies evolve along a seemingly universal KS relation (slope~1.13)

A³COSMOS: On-going project

The dust-obscured SFRD at *z* ~ 5.5

(uv-based stacking analysis of mass-complete sample of SFGs)

Steeper IRX - M $_{\star}$ relation at $z \sim 5.5$

The dust-obscured SFRD account for ~40% of the total SFRD at $z \sim 5.5$

A³COSMOS: On-going project

The dust-obscured SFRD at *z* ~ 5.5

(uv-based stacking analysis of mass-complete sample of SFGs)

Steeper IRX - M $_{\star}$ relation at $z \sim 5.5$

The dust-obscured SFRD account for ~40% of the total SFRD at $z \sim 5.5$

- lacksquareemission of high-z galaxies
- 10th of March 2020 : <u>https://sites.google.com/view/a3cosmos/data</u>
- the A³COSMOS archive:

 - MS galaxies have relatively compact star-forming extent, with Re \leq 2.5 kpc
 - MS galaxies evolve along a seemingly universal KS relation (slope~1.13)
- spectroscopic capabilities of the A³COSMOS database, stay tuned !

The A³COSMOS database is up and running. It provides an ever-growing view on the (sub)mm

• The latest release of A³COSMOS includes all ALMA projects in COSMOS available as of the

• The development of a dedicated *uv*-based stacking analysis tool unleashes the full capability of

• Down to >10¹⁰ M_{\odot} and up to $z\sim4$, the SFRs of MS galaxies is controlled by their gas content

• We are extending this database toward GOODS-S and UDS as well as starting to exploit the

