Our Current Understanding of the Dust Properties of Nearby Galaxies

Frédéric GALLIANO

AIM, CEA/Saclay, France

June 9, 2022

- What constraints do they bring on dust?
- The diversity of nearby galaxies

1 MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2 THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2 THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

3 CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2 THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

3 CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

4) SUMMARY & PROSPECTIVES

- What have we learned so far?
- What are the next challenges & opportunities?

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2 THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

3 CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

4 SUMMARY & PROSPECTIVES

- What have we learned so far?
- What are the next challenges & opportunities?

The Milky Way point of view

The Milky Way point of view

Best linear resolution

The Milky Way point of view

- Best linear resolution
- Most comprehensive observable set

The Milky Way point of view

Best linear resolution

 \Rightarrow Primary constraint for dust models

Most comprehensive observable set

- Best linear resolution
- Most comprehensive observable set

 \Rightarrow Primary constraint for dust models But, peculiar case: SBc, Z_{\odot} , $\simeq 1 \ M_{\odot}/{
m yr}$

- Best linear resolution
- Most comprehensive observable set

⇒ Primary constraint for dust models But, peculiar case: SBc, Z_{\odot} , $\simeq 1 M_{\odot}$ /yr

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

- Best linear resolution
- Most comprehensive observable set

⇒ Primary constraint for dust models But, peculiar case: SBc, Z_{\odot} , $\simeq 1 M_{\odot}$ /yr

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)

F. Galliano (AIM)

- Best linear resolution
- Most comprehensive observable set

⇒ Primary constraint for dust models But, peculiar case: SBc, Z_{\odot} , $\simeq 1 M_{\odot}$ /yr

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Spiral/Disk (intermediate)

Dwarf/Irregular (low Z, gas rich)

F. Galliano (AIM)

SF2A, Besançon

- Best linear resolution
- Most comprehensive observable set

⇒ Primary constraint for dust models But, peculiar case: SBc, Z_{\odot} , $\simeq 1 M_{\odot}$ /yr

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Spiral/Disk (intermediate)

Elliptical/Lenticular (high Z, gas poor)

Dwarf/Irregular (low Z, gas rich)

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2 THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

4 SUMMARY & PROSPECTIVES

- What have we learned so far?
- What are the next challenges & opportunities?

Effect of the Interstellar Radiation Field Intensity

Effect of the Interstellar Radiation Field Intensity

Effect of the Interstellar Radiation Field Intensity

Long term evolution: ($\simeq 1$ Gyr) linked to elemental enrichment.

Long term evolution: ($\simeq 1$ Gyr) linked to elemental enrichment.

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, *etc.*).

Long term evolution: ($\simeq 1$ Gyr) linked to elemental enrichment.

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

⁽Madden et al., 2013; Rémy-Ruyer et al. 2015)

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

⁽Madden et al., 2013; Rémy-Ruyer et al. 2015)

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: ($\simeq 10$ Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

Short term evolution: (\simeq 10 Myr) linked to star formation (feedback, cloud evaporation, etc.).

F. Galliano (AIM)

SF2A, Besançon

F. Galliano (AIM)

F. Galliano (AIM)

SF2A, Besançon

F. Galliano (AIM)

Evolution the Aromatic Feature Carriers with Metallicity

Evolution the Aromatic Feature Carriers with Metallicity

Evolution the Aromatic Feature Carriers with Metallicity

Evolution the Aromatic Feature Carriers with Metallicity

Evolution the Aromatic Feature Carriers with Metallicity

Found in the literature:

Found in the literature:

Enhanced destruction by hard UV from young stars (e.g. Madden et al., 2006);

N11: ISRF intensity, <U> 36.744 00 15 ⁶J2000 Found in the literature: Enhanced destruction by hard UV from 30 young stars (e.g. Madden et al., 2006); -66° 45' 05^h 00^m 52 0 Habings nah 58ⁿ 56 54

(Galametz et al., 2016)

αJ2000

N11: ISRF intensity, <U>

00 15 Found in the literature: J2000 1 Enhanced destruction by hard UV from young stars (e.g. Madden et al., 2006); -66° 45 05^h 00^m 52 Habings 04 5 56 54 a12000 N11: aromatic feature carrier fraction, gas 2.406 00 15 22000 -66° 45' M 05^h 00^m (Galametz et al., 2016) 54 52 0 94F/9 04 58 56 α13000

36.744

SF2A, Besancon

F. Galliano (AIM)

Found in the literature:

- Enhanced destruction by hard UV from young stars (*e.g.* Madden *et al.*, 2006);
- 2 Delayed C injection by AGB stars (Galliano *et al.*, 2008a); however efficient destruction ⇒ need reformation in the ISM;

SF2A, Besançon

(Galametz et al., 2016)

Found in the literature:

- Enhanced destruction by hard UV from young stars (e.g. Madden et al., 2006);
- 2 Delayed C injection by AGB stars (Galliano *et al.*, 2008a); however efficient destruction ⇒ need reformation in the ISM;
- Formation by fragmentation of large hydrocarbons (Seok *et al.*, 2014) ⇒ large scatter with SFH;

SF2A, Besançon

(Galametz et al., 2016)

Found in the literature:

- Enhanced destruction by hard UV from young stars (e.g. Madden et al., 2006);
- 2 Delayed C injection by AGB stars (Galliano *et al.*, 2008a); however efficient destruction ⇒ need reformation in the ISM;
- 9 Formation by fragmentation of large hydrocarbons (Seok *et al.*, 2014) ⇒ large scatter with SFH;
- Formation in molecular clouds (Sandstrom et al., 2010) ⇒ difficult to constrain.

(Galametz et al., 2016)

F. Galliano (AIM)

SF2A, Besancon

Milky Way: Fitzpatrick et al. (2019)

Milky Way: Fitzpatrick et al. (2019)

Milky Way: Fitzpatrick et al. (2019)

Milky Way: Fitzpatrick *et al.* (2019) LMC/SMC: Gordon *et al.* (2003)

Milky Way: Fitzpatrick *et al.* (2019) LMC/SMC: Gordon *et al.* (2003)

 $N_{\rm E}$ $\delta(E) \equiv$ log gas depletion of E abundance in the gas

F. Galliano (AIM)

 $\delta(E) \equiv$ log

abundance in the gas

depletion of E

total abundance

In the Milky Way:

Depletions in the Magellanic Clouds

Depletions in the Magellanic Clouds

Differences with the Milky Way

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:
 LMC abundance-scaled

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:

LMC abundance-scaled SMC different

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:

LMC abundance-scaled SMC different

 \Rightarrow MW patterns do not apply to low-Z systems

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:

LMC abundance-scaled SMC different

 \Rightarrow MW patterns do not apply to low-Z systems

(Tchernyshyov et al., 2015, Jenkins et al., 2017)

(Tchernyshyov et al., 2015)

Differences with the Milky Way

- Dust/gas consistent with SED
- Clear variations of depletions \Rightarrow grain growth
- Patterns compared to the MW:

LMC abundance-scaled SMC different

 \Rightarrow MW patterns do not apply to low-Z systems

• SMC: $\delta(Si)$ consistent with 0, but $\delta(Fe)$ significant

(Tchernyshyov et al., 2015, Jenkins et al., 2017)

(Tchernyshyov et al., 2015)

The Puzzling Submillimeter Excess

Attempts at Explaining the Submillimeter Excess

Attempts at Explaining the Submillimeter Excess

Reality of the phenomenon

Attempts at Explaining the Submillimeter Excess

Reality of the phenomenon

In dwarf galaxies: confirmed by Dumke *et al.* (2004), Galliano *et al.* (2005), Galametz *et al.* (2009), Bot *et al.* (2010), *etc.*

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust ($T \simeq 5 - 9$ K; Galliano *et al.*, 2003, 2005)

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust $(T \simeq 5 - 9 \text{ K}; \text{ Galliano } et al., 2003, 2005) \Rightarrow$ up to 80% of the mass \Rightarrow small & dense clumps

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust $(T \simeq 5 - 9 \text{ K}; \text{ Galliano } et al., 2003, 2005) \Rightarrow$ up to 80% of the mass \Rightarrow small & dense clumps \Rightarrow inconsistent when spatially resolved (Galliano et al., 2011).

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
 T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017)

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
 T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017) ⇒ difficult to explain spatial trends.

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
 T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017) ⇒ difficult to explain spatial trends.

Magnetic grains: inclusions or free-flying particles (Draine & Hensley, 2014)

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
 T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017) ⇒ difficult to explain spatial trends.

Magnetic grains: inclusions or free-flying particles (Draine & Hensley, 2014) \Rightarrow polarization tests, but difficult to explain the spatial trends.
Reality of the phenomenon

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017) ⇒ difficult to explain spatial trends.
Magnetic grains: inclusions or free-flying particles (Draine & Hensley, 2014) ⇒ polarization tests, but difficult to explain the spatial trends.
Spinning dust: would spin too fast, but can be used in combination with other processes (Bot et al., 2010)

Reality of the phenomenon

In dwarf galaxies: confirmed by Dumke et al. (2004), Galliano et al. (2005), Galametz et al. (2009), Bot et al. (2010), etc.

In the Milky Way: same decreasing trend with surface density (Paradis et al., 2013).

 \Rightarrow important to use a state-of-the-art dust model.

Proposed scenarios

Very cold dust (T ≃ 5 - 9 K; Galliano et al., 2003, 2005) ⇒ up to 80% of the mass ⇒ small & dense clumps ⇒ inconsistent when spatially resolved (Galliano et al., 2011).
T-dependent optical properties (Mény et al., 2007) ⇒ consistent with laboratory data (Demyk et al., 2017) ⇒ difficult to explain spatial trends.
Magnetic grains: inclusions or free-flying particles (Draine & Hensley, 2014) ⇒ polarization tests, but difficult to explain the spatial trends.
Spinning dust: would spin too fast, but can be used in combination with other processes (Bot

et al., 2010) \Rightarrow debated carriers.

Outline of the Talk

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2) THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

4 SUMMARY & PROSPECTIVES

- What have we learned so far?
- What are the next challenges & opportunities?

The equations of evolution (Dwek & Scalo, 1980):

Stellar evolution:

The equations of evolution (Dwek & Scalo, 1980):

Stellar evolution: $\frac{\mathrm{d}M_{\star}(t)}{\mathrm{d}t} =$

F. Galliano (AIM)

The equations of evolution (Dwek & Scalo, 1980):

Stellar evolution: $\frac{dM_{\star}(t)}{dt} = \psi(t)$

The equations of evolution (Dwek & Scalo, 1980):

dM

Stellar evolution:

$$\frac{\psi(t)}{t} = \underbrace{\psi(t)}_{\mathsf{SFR}} - \underbrace{e(t)}_{\mathsf{ejected ma}}$$

The equations of evolution (Dwek & Scalo, 1980):

Stellar evolution: $\frac{dM_{\star}(t)}{dt} = \underbrace{\psi(t)}_{\text{SFR}} - \underbrace{e(t)}_{ejected mass}$ Gas evolution: $\frac{dM_{gas}(t)}{dt} =$

The equations of evolution (Dwek & Scalo, 1980):

Stellar evolution: $\frac{dM_{\star}(t)}{dt} = \underbrace{\psi(t)}_{\text{SFR}} - \underbrace{e(t)}_{ejected mass}$ Gas evolution: $\frac{dM_{gas}(t)}{dt} = -\underbrace{\psi(t)}_{astration}$

Stellar evolution:
$$\frac{\mathrm{d}M_{\star}(t)}{\mathrm{d}t} = \underbrace{\psi(t)}_{\mathsf{SFR}} - \underbrace{e(t)}_{ejected mass}$$
Gas evolution:
$$\frac{\mathrm{d}M_{\mathsf{gas}}(t)}{\mathrm{d}t} = -\underbrace{\psi(t)}_{\mathsf{astration}} + \underbrace{e(t)}_{\mathsf{returned by st.}}$$

Stellar evolution:
$$\frac{dM_{\star}(t)}{dt} = \underbrace{\psi(t)}_{\text{SFR}} - \underbrace{e(t)}_{ejected mass}$$
Gas evolution:
$$\frac{dM_{gas}(t)}{dt} = -\underbrace{\psi(t)}_{astration} + \underbrace{e(t)}_{returned by stars} + \underbrace{R_{in}(t)}_{infall rate}$$

Stellar evolution:
$$\frac{dM_{\star}(t)}{dt} = \underbrace{\psi(t)}_{\text{SFR}} - \underbrace{e(t)}_{\text{ejected mass}}$$
Gas evolution:
$$\frac{dM_{\text{gas}}(t)}{dt} = -\underbrace{\psi(t)}_{\text{astration}} + \underbrace{e(t)}_{\text{returned by stars}} + \underbrace{\mathcal{R}_{\text{in}}(t)}_{\text{infall rate}} - \underbrace{\mathcal{R}_{\text{out}}(t)}_{\text{outflow rat}}$$

The equations of evolution (Dwek & Scalo, 1980):

Dust evolution parameters:

The equations of evolution (Dwek & Scalo, 1980):

Dust evolution parameters:

 $\langle Y_{SN} \rangle$: dust condensation efficiency in SN II

The equations of evolution (Dwek & Scalo, 1980):

Dust evolution parameters:

 $\langle Y_{\rm SN} \rangle$: dust condensation efficiency in SNII $\epsilon_{\rm grow}$: grain growth efficiency in the ISM

The equations of evolution (Dwek & Scalo, 1980):

Dust evolution parameters:

 $\langle Y_{\rm SN} \rangle$: dust condensation efficiency in SN II $\epsilon_{\rm grow}$: grain growth efficiency in the ISM $m_{\rm gas}^{\rm dest}$: destruction by SN II shock waves

The equations of evolution (Dwek & Scalo, 1980):

Dust evolution parameters:

- $\langle Y_{SN} \rangle$: dust condensation efficiency in SNII ϵ_{grow} : grain growth efficiency in the ISM m_{gas}^{dest} : destruction by SNII shock waves
- \Rightarrow Parameters empirically inferred (e.g.: De Looze et al., 2020; Nanni et al., 2020; Galliano et al., 2021; De Vis et al., 2021)

Dust-Related Scaling Relations

Fitting Dust Evolution Tracks

Fitting Dust Evolution Tracks

Fitting Dust Evolution Tracks

The Three Dust Build-Up Regimes

Dust evolution balance:

Dust evolution balance:

Dust evolution balance:

Low metallicity: dust formation dominated by SN II.

Dust evolution balance:

Low metallicity: dust formation dominated by SN II.

Take away points:

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

 Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources
 ⇒ constrain both production regimes;

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources
 ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z \Rightarrow simply need Z $\gtrsim 1/5~Z_{\odot}.$

The example of A2744_YD4 ($z \simeq 8.38$; age $\lesssim 200$ Myr)

(Laporte et al., 2017)

What Can We Guess About Early Dust Evolution (high z)?

What Can We Guess About Early Dust Evolution (high z)?

SF2A, Besançon

What Can We Guess About Early Dust Evolution (high z)?

SF2A, Besancon

F. Galliano (AIM)

Outline of the Talk

MOTIVATIONS

- What constraints do they bring on dust?
- The diversity of nearby galaxies

2) THE DUST PROPERTIES OF NEARBY GALAXIES

- Thermal IR emission
- UV-visible extinction
- Elemental depletions
- Long-wavelength properties

3 CONTRAINTS ON COSMIC DUST EVOLUTION

- Cosmic dust evolution models
- Dust-related scaling relations
- What local galaxies tell us about cosmic dust evolution

SUMMARY & PROSPECTIVES

- What have we learned so far?
- What are the next challenges & opportunities?

Milky Way studies

Milky Way studies

Best linear resolution

Milky Way studies

- Best linear resolution
- Comprehensive observables

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

• Understand the effects of Z & SFR

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample
- \Rightarrow Constrain cosmic dust evolution

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample
- \Rightarrow Constrain cosmic dust evolution

Distant galaxy studies

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample
- $\Rightarrow\,$ Constrain cosmic dust evolution

Distant galaxy studies

Allow to understand galaxy evolution

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample
- \Rightarrow Constrain cosmic dust evolution

Distant galaxy studies

- Allow to understand galaxy evolution
- Give access to truly primordial systems (effects of pop. III)

Milky Way studies

- Best linear resolution
- Comprehensive observables
- \Rightarrow Develop dust models

Nearby galaxy studies

- Understand the effects of Z & SFR
- Statistical sample
- \Rightarrow Constrain cosmic dust evolution

Distant galaxy studies

- Allow to understand galaxy evolution
- Give access to truly primordial systems (effects of pop. III)
- \Rightarrow Better understanding of early evolution

F. Galliano (AIM)

SED: Z & SF activity are the two main parameters

SED: Z & SF activity are the two main parameters **Aromatic features:** paucity @ low-Z & high U

SED: Z & SF activity are the two main parametersAromatic features: paucity @ low-Z & high UDepletions: patterns change @ low-Z

Dust evolution

Dust evolution

Dust evolves constantly: local scales & globally (cosmic evolution).

SED: Z & SF activity are the two main parameters Aromatic features: paucity @ low-Z & high U Depletions: patterns change @ low-Z Submm excess: enhanced at low Z & low $\Sigma_{gas} \Rightarrow$ unknown origin Dust-to-gas: non-linear trend with Z

Dust evolution

- Dust evolves constantly: local scales & globally (cosmic evolution).
- 2 Dust is mainly formed in the ISM ($\simeq 50$ Myr at $Z\gtrsim 1/5~Z_{\odot})$ \Rightarrow can explain massive dusty galaxies.

SED: Z & SF activity are the two main parameters Aromatic features: paucity @ low-Z & high U Depletions: patterns change @ low-Z Submm excess: enhanced at low Z & low $\Sigma_{gas} \Rightarrow$ unknown origin Dust-to-gas: non-linear trend with Z

Dust evolution

- Ust evolves constantly: local scales & globally (cosmic evolution).
- 2 Dust is mainly formed in the ISM ($\simeq 50$ Myr at $Z\gtrsim 1/5~Z_{\odot})$ \Rightarrow can explain massive dusty galaxies.
- Only in low-Z systems, SN II condensation dominates.

The next challenges

1 Account for local dust evolution in nearby galaxies

The next challenges

1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy Z/SF

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The opportunities

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The opportunities

ALMA (2009-; submm/mm)

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The opportunities

JWST (2021-; NIR-MIR)

 $\theta \leq 1^{\prime\prime}$

ALMA (2009-; submm/mm)

 $heta \lesssim 1^{\prime\prime}$

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The opportunities

 $\theta \leq 1''$

PRIMA (2030?; MIR-submm)

 $\theta \lesssim 1$

ALMA (2009-; submm/mm)

 $\theta \leq 1^{\prime\prime}$

The next challenges

- 1 Account for local dust evolution in nearby galaxies \Rightarrow modelosaur approach
- 2 Build extragalactic dust models \Rightarrow constraints on the diffuse ISM of nearby galaxies
- 3 Degeneracy $Z/SF \Rightarrow$ detect quiescent low-Z galaxies
- 4 Statistics on long-wavelength properties \Rightarrow spatially-resolved mm observations

The opportunities

 $heta \lesssim 1^{\prime\prime}$

PRIMA (2030?; MIR-submm)

 $heta \lesssim 1' \ \Rightarrow$ need a high angular resolution FIR project

ALMA (2009-; submm/mm)

 $\theta \leq 1^{\prime\prime}$

Recommended Reading

Recommended Reading

Galliano, Galametz & Jones (2018, ARA&A)

A ANNUAL R reviews

Annual Review of Astronomy and Astrophysics The Interstellar Dust Properties of Nearby Galaxies

Frédéric Galliano,^{1,2} Maud Galametz,^{1,2} and Anthony P. Jones³

¹Institute of Research into the Fundamental Laws of the Universe (IRFU), Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France; email: frederic.galliano@cea.fr, mand.galametx@cea.fr

² Astrophysique, Instrumentation, Modélisation (AIM), CNRS UMR 7158, Université Paris-Diderot, Sorbonne Paris Cité, CEA, F-91191 Gif-sur-Yvette, France

¹Institut d'Astrophysique Spatiale, CNRS UMR 8617, Université Paris-Sud and Université Paris-Saclay, F-91405 Orsay, France; email: anthony.jones@ias-u.psud.fr

Recommended Reading

Galliano, Galametz & Jones (2018, ARA&A)

A ANNUAL R reviews

Annual Review of Astronomy and Astrophysics The Interstellar Dust Properties of Nearby Galaxies

Frédéric Galliano,^{1,2} Maud Galametz,^{1,2} and Anthony P. Jones³

¹Institute of Research into the Fundamental Laws of the Universe (IRFU), Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France; email: frederic.galliano@cea.fr, masd.galametc@cea.fr

²Astrophysique, Instrumentation, Modélisation (AIM), CNRS UMR 7158, Université Paris-Diderot, Sorbonne Paris Cité, CEA, F-91191 Gif-aur-Yvette, France ³Inatiut d'Astrophysique Spatiale, CNRS UMR 8617, Université Paris-Sud and Université Paris-Sachy, F-94160 Orays, France, muil: anthony-ione@lis-a-ty-and.fr

Galliano (2022, HDR)

- Open source on <u>ArXiv</u> & <u>HAL</u>
- Written as a textbook
- 353 pages
- 165 figures
- 31 tables
- 796 references

A Nearby Galaxy Perspective on Interstellar Dust Properties and their Evolution

Habilitation à diriger des recherches de l'Université Paris-Saclay

Habilitation présentée et soutenue à Gif-sur-Yvette, le vendredi 14 janvier 2022, par

> Frédéric GALLIANO Département d'Astrophysique, CEA Paris-Saclay

Composition du jury:	
Véronique BUAT	Rapportrice
Professieure, Laboratoire d'Astrophysique de Marseille	
Stéphane CHARLOT	Examinates
Directeur de recherche, Institut d'Astrophysique de Paris	
VassEls CHARMANDARIS	Rapporteur
Professeur, Université de Crète, Grèce	
François-Xavier DÉSERT	Examinateu
Astronome, Institut de Planétologie et d'Astrophysique de	
Grenoble	
Thomas HENNING	Rapporteur
Professieur, Institut Max Planck d'Astronomie, Heidelberg,	
Allemagne	
Laurent VERSTRAFTE	Président
Professeur, Institut d'Astrophysique Spatiale, Orsay	

diriger des recherches 10 Habilitation