

CMrs

The future of instrumen introduction

Aix*Marseille

Laure Ciesla & Denis Burgarella

Journées de la SF2A — Besançon 2022

The future of instrumentation for dust observations

introduction to the discussion

After SPICA's death: a new hope for IR astronomy

ESA put an end to SPICA October 2020:

October 2021:

Novembre 2021: Survey of the community needs in terms of IR observations

December 2021: ESA M7 call

January 2022:

Spring 2022:

May 2022: **Results of ESA M7 first selection**

- US Decadal Survey on Astronomy and Astrophysics 2020

- Workshop "Next generation mid/far-IR space missions, a European perspective"
- Organisation and preparation of the different US IR probe candidates

140 persons provided answers (as of December 13th 2022)

Redshift range of interest

Topic of interest

140 persons provided answers (as of December 13th 2022)

Spectral resolution

within those available in the poll

Wavelength range of interest

140 persons provided answers (as of December 13th 2022)

Spatial resolution

within those available in the poll

Field of view

Conclusions of the survey

formation and planet formation (exoplanets)

Almost equal number of votes for 0<z<3, 3<z<6 and Milky way

Preferred wavelength range: Far-IR = $30-200 \mu m$

Required spectral resolution: **R = 500 - 1000**

Required spatial resolution: 1"

Sensitivity: faint-to-medium depth objects (M_{AB}~24-28)

Preferred instrument: Integral Field (& MOS)

Field of view: Medium size 1'-to-10'

"Galaxies" (extragalactic in general) seems to be the principal interest, followed by local star

NASA call for X-ray / IR probe

- Measure the **building up of galaxies**, heavy elements, and interstellar dust from the first galaxies to today
- Probe the **co-evolution** of **galaxies** and their **supermassive black holes** across cosmic time
- Trace the astrochemical signatures of planet formation (within and outside) our own Solar System)

Release of this second notice:

Release of draft AO:

Release of final AO:

Preproposal conference:

Proposals due:

Selection for competitive Phase A: Mid 2024 (target)

Concept study reports due:

Down-selection:

Astro2020 called out the science areas enabled by a FarIR Probe:

- May 2022
- July 2022 (target)
- July 2023 (target)

- ~ 3 weeks after final AO release
- 90 days after AO release (~October 2023)
- - Early 2025 (target)
 - Mid/Late 2025 (target)

The PRobe far-Infrared Mission for Astrophysics

PRIMA PRobe Infrared Mission for Astrophysics

Exoplanets — Solar System — Local galaxies – AGN – ISM – Star and planet formation Dust and metals — Galaxies evolution

PI: Jason Glenn

PRIMA

Deputy PI, Caltech contact: Matt Bradford

- Science lead: Alex Pope
- European contact: Denis Burgarella

The PRobe far-Infrared Mission for Astrophysics

PRIMA

PRIMA

PRobe Infrared Mission for Astrophysics

Contacts:

LAM:

Denis Burgarella Laure Ciesla Eric Prieto SRON: Willem Jellema

Post LAM – SRON Meeting Field Geometry 2 June 2022

 $R = \lambda / \Delta \lambda = 10$

PRIMA: very first design of the Imager

 $\mathsf{R} = \lambda / \Delta \lambda = 4$

arcmin 4

М3

Contacts:

LAM:

Denis Burgarella Laure Ciesla Eric Prieto

SRON:

Willem Jellema

Hyperspectral imager unit

1-B (45-80 micron, R10)

PRIMA: very first design of the Imager

Polarimetric imager unit

R10) (25-45 micron,

Linear Variable Filter (LVF)

2 imager units (instruments) 3 FPA's **1 set of reimager optics** (relay)

Contacts:

LAM:

Denis Burgarella Laure Ciesla Eric Prieto SRON: Willem Jellema

PRIMA: very first design of the Imager

Rest-frame Wavelength (um)

SALTUS

Single Aperture Large Telescope for Universe Studies

PI: Chris Walker (Goddard)

European contact: Peter Roelfsema

Contact in Europe: Peter Roelfsema

- 🚴 20m
- **45K Optics**
- Coherent & Incoherent Spectroscopy/Imaging
- Adaptive Optics
- 💸 1mm ~3um
- **EHT** Space node
- **5** years Baseline Mission

Exoplanets – Solar System – Habitability during planet formation – Protoplanetary disks – Galactic feedback from black holes & stars — Formation and transport of dust and metals — Dust, metals and the first stars at cosmic dawn

SALTUS concept

SALTUS instruments

Mid-IR Spectroscopic Imager (MISI)

$$R = 64 - 600$$

SAFARI-Lite

HEB Heterodyne Array (HHA)

$$R = 10^5 - 10^6$$

SIS Heterodyne Array (SHA)

520 — 650um (ISM Spectroscopy; Polarization)

$$R = 10^5 - 10^6$$

SALTUS microarcsecond VLBI

Dan Marrone: dmarrone@arizona.edu

SALTUS Microarcsecond VLBI

Extending mmVLBI to space enables science far beyond EHT

Near apogee: BH mass census
 Using angular diameters (~M/D) to weigh black holes across the universe

 Inbound/outbound: Precision GR test via lensed photon ring

Gralla, Lupsasca, and Marrone 2020 https://doi.org/10.1103/PhysRevD.102.124004

 Perigee: Exploring accretion and jets with BH movies at 5x EHT resolution

Far-IR Spectroscopy Space Telescope

PI: Asantha Cooray

French contact: Martina Wiedner

FIRSST

- Low-risk Spitzer-like architecture
- X 1.5m class aperture, actively cooled
- >98% community-led science + GTO to science/instrument teams
- 5 year science mission operations

FIRSST at a glance

Origin and evolution of planet-forming disks — trail of water from molecular clouds to oceans -Mass assembly of galaxies

SPace InfraRed Interferometric Telescope

- Angular resolution 0.3 (λ /100um) arcsec
- X Dense *u-v* plane coverage for high quality imaging Integral field spectroscopy over a 1 arcmin FOV
- Sensitivity 10 µJy continuum; 10⁻¹⁹ W m⁻² spectral lines
- Single scientific instrument ("double Fourier" beam combiner) X

PI: Dave Leisawitz

French/European contact: ?

Galaxy formation and evolution — Protoplanetary disks and planet formation Debris disks and planetary system architecture

SPICE SPRF

More information on IR NASA probes

Health and Safety

PRIMA: Denis Burgarella, Laure CIESLA
FIRSST: Martina Wiedner
SALTUS: Peter Roelfsema
SPIRIT/SPICE: ...

https://casa.colorado.edu/~mema5817/irworkshop_program.html

Workshop Program

Final versions of all talk slides are available here: IRSTIG Workshop Talk Slides

Video recordings of each day can be found here: March 30, 2022 March 31, 2022 April 1, 2022

As a result of the M7 first selection: no IR mission, only LiteBird (CMB experiment in mm)

ESA contribution to a NASA IR probe: very unlikely

.

Informations provided in this talk on the probes mostly date from April 1st 2022

Where do the answers come from?

140 persons provided answers (as of December 13th 2022)

Type of data

within those available in the poll

Heterodyne spectroscopy was mentioned in the comments

SALTUS instruments: SAFARI-Lite

SAFARI-Lite Roelfsema+18

Table 2 SAFARI performance summary.				
Band	SW	MW	IW	VIW
$\frac{\lambda}{\lambda}$ range	34-56µm	54-89µm	87-143μm	$140-230\mu m$
high \bar{R}	11700-7150	7400-4500	4600-2800	2850-1740
nom. <i>R</i> FWHM	300 4.5" (0 .6	300 ") 7.2"(1.	300 1") 12"(1.8	300 ") 19"(3")
Point source spectr. 5σ -1hr flux limit $(10^{-20} \text{ Wm}^{-2})^{3''}$				
high R	13	13	13	15
nom. R	7.2	6.6	6.6	8.2
Mapping spectr. 1'×1' 5 σ -1hr flux limit (10 ⁻²⁰ Wm ⁻²)				
high R	189	113	73	51
nom. R	84	49	30	23
Mapping phot. $1' \times 1' 5\sigma$ -1hr flux density limit (μ Jy)				
	209	192	194	239
5σ conf.	15	200	2000	10000

high R - high resolving power mode; $\mu{\rm m}$ $R\sim 11000$ at 34 to $R\sim 1500$ at 230 $\mu{\rm m}$ nom. R - nominal resolving power; $R\sim 300$ 5σ conf. - 5σ conformation limit

Mid-IR Spectroscopic Imager (MISI)

$$R = 64 - 600$$

SAFARI-Lite

HEB Heterodyne Array (HHA)

R = $10^5 - 10^6$

MKIDs

SIS Heterodyne Array (SHA)

520 — 650um (ISM Spectroscopy; Polarization)

$$R = 10^5 - 10^6$$

