

DUST EVOLUTION FROM THE DIFFUSE TO THE DENSE ISM

N. Ysard (IAS, CNRS, Université Paris Saclay)

FROM OBSERVATIONS TO GRAIN PROPERTIES A few constraint examples

From observations to grain properties

What do we have to constrain the grain properties?

- Depletion measurements + X-ray \rightarrow composition
- Extinction

 $E(B-V) = A_B - A_V \& R_V = A_V / E(B-V)$ mid-IR silicate bands at ~ 10 and 18 µm

Emission mid-IR to far-IR ratio modified BB fit $\rightarrow I_{\nu} = N_{H} \sigma_{\nu 0} B_{\nu}(T) (\nu/\nu_{0})^{\beta}$

optical depth $\rightarrow \tau_{_{\nu 0}}$ = N_{_{H}} \sigma_{_{\nu 0}}

- Scattered light from visible to mid-IR \rightarrow size
- Polarisation

 $\lambda_{max} \rightarrow$ peak wavelength of starlight polarisation P/I \rightarrow polarisation fraction in far-IR/submm

From observations to grain properties

What do we have to constrain the grain properties?

- Depletion measurements + X-ray \rightarrow composition
- Extinction

 $E(B-V) = A_B - A_V \& R_V = A_V / E(B-V)$ mid-IR silicate bands at ~ 10 and 18 µm

- Emission mid-IR to far-IR ratio modified BB fit $\rightarrow I_{\nu} = N_{H} \sigma_{\nu 0} B_{\nu}(T) (\nu/\nu_{0})^{\beta}$ optical depth $\rightarrow \tau_{\nu 0} = N_{H} \sigma_{\nu 0}$
- Scattered light from visible to mid-IR \rightarrow size
- Polarisation

 $\lambda_{max} \rightarrow$ peak wavelength of starlight polarisation P/I \rightarrow polarisation fraction in far-IR/submm

Grain composition, abundance, size, shape...

Variations in the silicate mid-IR features McClure (2009)

• Sample

24 G0-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μm (2MASS)
- Observational results for A_κ > 0.5 (⇔ A_ν ~ 4) extinction curve flattening widening of both bands BUT peak positions unchanged variations correlated with ice features

Variations in the silicate mid-IR features McClure (2009)

• Sample

24 G0-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μ m (2MASS)
- Observational results for A_κ > 0.5 (⇔ A_ν ~ 4) extinction curve flattening widening of both bands BUT **peak positions unchanged** variations correlated with ice features

Grain size cannot exceed ~ 1 μ m

Variations in the silicate mid-IR features McClure (2009)

• Sample

24 G0-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μ m (2MASS)
- Observational results for A_K > 0.5 (⇔ A_V ~ 4)
 extinction curve flattening
 widening of both bands
 BUT peak positions unchanged
 variations correlated with ice features

Grain size cannot exceed ~ 1 μ m Carbon accretion ?

Variations in the silicate mid-IR features McClure (2009)

• Sample

24 GO-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μ m (2MASS)
- Observational results for A_K > 0.5 (⇔ A_V ~ 4)
 extinction curve flattening widening of both bands
 BUT peak positions unchanged
 variations correlated with ice features

Grain size cannot exceed ~ 1 µm Carbon accretion ? Carbon and ice accretion ? From isolated grains to icy aggegates ? → widening only of the 18 µm band

- Increase in $\rm R_{v}$ with $\rm A_{v}$
- Increase when water ice features are detected
 - **b** Grain growth associated to ice accretion

Variations in the mid- to far-IR SED Stepnik et al. (2003)

Taurus molecular cloud

L1506 filament

No emission in from the mid-IR to ~ 70 μm
 → small grains disappear from the diffuse to the dense ISM

4 Small grain accretion onto larger grains \rightarrow grain growth

Visible extinction vs. far-IR SED Ysard et al. (2013)

- Aggregates for 1000 < n_{H} < 2000 H/cm³
 - $\rightarrow A_{v} \sim 2 \text{ to } 4$
- Same as increase in R_v , ice features, mid-IR silicate bands
 - \rightarrow Grain growth
 - → From isolated grains to aggregates

Variations in the far-IR SED Rémy et al. (2017, 2018)

- au_{353GHz} / N_{H} (10⁻²⁷ cm²) 40 Anticentre 35 30 25 20 15 0.2 0.4 0.6 0.8 N_{H_2}/N_H
- Observations of 6 nearby anti-centre clouds

 au_{353GHz} .

Usual behaviour of dense clouds

> $\rightarrow T_{dust}$ $\rightarrow \tau_{submm/FIR}$ and $\beta \nearrow$

Grain growth From isolated grains to aggregates Carbon accretion ? DCD-TLS ?

• Gradual evolution across phases significant in DNM stronger in CO

Variations in the dust scattering efficiency Cloud- & Core-shine

- In the visible: 30's
 Struve & Elvey (1936)
- In the near-IR: 90's Witt et al. (1994)
- In the mid-IR: 2010
 Pagani et al. (2010)
- Albedo and asymmetry parameter Mattila (1970ab, 2018)
- Scattering by bigger grains than in the diffuse ISM Steinacker et al. (2010) Lefèvre et al. (2014)

Grain growth

0.3

Variations in the dust scattering efficiency Andersen et al. (2014) & Ysard et al. (2016)

• Andersen et al. (2014)

nap of TMC-1

39m00s

4h38m00s

Dec ((2000)

+26°1

41m00s

40m00s

RA (12000)

→ common density threshold for coreshine & ice feature at 3 µm

 Ysard et al. (2016) need for aggregates when 1000 < n_H < 2000 H/cm³ → A_V ~ 2 to 4

0.075

0.060

0.015

0,000

-0.015

0.030

0.14

_ 0.10

80.0 WJ 80.0 0.06

- 0.04

0.02

0.00

-0.2

-0.1

0.12 H

Variations in the visible starlight polarisationVaillancourt et al. (2020)Patat et al. (2010): diffuse ISM

• Increase in λ_{max} & decrease in p_{max} /E(B-V) in dense clouds \rightarrow threshold around A_v = 3-4

4 Grain growth

~ 0.55 µn

6000

8000

(%) d

0

4000

Variations in dust polarisation Fanciullo et al. (2017), Juvela et al. (2018)

- Lower polarisation fraction P/I than in diffuse ISM
 - \rightarrow sharp drop above N_H ~ 2×10²² H/cm²
- Decrease in efficiency of grain alignement with the magnetic field
- Fanciullo et al. (2017): P/p to constrain grain properties
 → increase in size not enough => structure, composition

Grain growth to 0.8 – 1 μm Aggregates? Ice accretion ?

Juvela et al. (2018): massive IRDC G035.39-00.33

GRAIN SIZE DETERMINATION Effects of grain structure

Exemple: silicate mid-IR features McClure (2009) → observations

- Broader features than in the diffuse ISM
- Lower constrast with continuum
 - \Rightarrow significant grain growth ?

Exemple: silicate mid-IR features Min et al. (2016) \rightarrow fractal dimension

aggregate
 volume equivalent
 compact sphere
 equivalent porous
 sphere

amorphous "olivine" monomer radius a₀ = 0.4 µm

sizes UNDERestimated when using compact spheres sizes OVERestimated when using porous spheres

Exemple: silicate mid-IR features Ysard et al. (2018) → monomers

- Amorphous olivine
- Aggregates with D_f = 2.5
- Three monomer shapes: spheres, oblates, prolates
- Four monomer sizes: $a_0 = 0.05$, 0.1, 0.5, and 1 μ m
- Porous monomers: 20% of vacuum

Exemple: silicate mid-IR features Ysard et al. (2018) \rightarrow monomers

Very difficult to determine grain shapes and sizes from the mid-IR features only

CLOUD MASS DETERMINATION Effects of size distribution & grain composition

 \rightarrow following figures based on Ysard et al. (2018, 2019)

Many mass estimates based on MBB fits

Mass estimates based on modified blackbody fits for dense ISM regions
 h molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 h young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution

Why is it important to determine n(a)? And not only a_{max}

Mass estimates based on modified blackbody fits for dense ISM regions

b molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)

4 young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

- Assume a dust opacity at a given wavelength
 - **b** pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 1: power-law size distribution
 - 𝖕 Weidenschilling (1997)
 - 4 Natta & Testi (2004)
 - **L** Draine (2006)

Լ...

What do the latest laboratory experiments tell us?

Coagulation model based on laboratory results

- Modelling question
 - ▶ shape of the size/mass distribution?
 - **b** a_{min}? a_{max}?
- Laboratory inputs
 - 𝖕 Güttler et al. (2010)
 - 4 Windmark et al. (2012)
 - **L** Güttler et al. (2010)
 - **4** Blum & Wurm (2008)
 - 4 Gundlach et al. (2011)
 - ₲ Gundlach & Blum (2015)
 - **L** Güttler et al. (2009)
 - **b** Weidling et al. (2009)
 - **L**andeck (2016)
- Model of Lorek et al. (2018)
 - **b** monomer size (0.1 or 1 μ m)
 - **4** radial position in the disk
 - **4** turbulence
 - 𝖕 gas surface density...

- Solution based on lab: Lorek et al. (2018)
 - Iocal growth of grains in discsmass distribution

outcomes of grain-grain collisions (Δv , $a_{projectile}$, a_{target}): sticking, bouncing, fragmentation, erosion, mass transfer

sticking properties of water ice and silicate monomers

bouncing of aggregates rather than just compact grains

pebble sizes in agreement with pebbles on comet 67P/Churyumov-Gerasimenko (Poulet et al. 2016)

Coagulation model based on laboratory results

- Modelling question
 - h shape of the size/mass distribution?
 - **4** a_{min}? a_{max}?

- Solution based on lab: Lorek et al. (2018)
 - **b** local growth of grains in discs
 - **4** mass distribution

strong departure from a classical power-law size/mass distribution

Influence on the dust opacity in the millimetre

Log-normal size distribution

In both cases: $a_{min} = 0.01 \,\mu$ m, $a_{max} = 10 \,$ cm, $M_{gas}/M_{dust} = 100$ 2/3 silicate + 1/3 amorphous carbon + 50% porosity \rightarrow spherical grains

Influence on the dust opacity in the millimetre

In both cases: $a_{min} = 0.01 \,\mu$ m, $a_{max} = 10 \,$ cm, $M_{gas}/M_{dust} = 100$ 2/3 silicate + 1/3 amorphous carbon + 50% porosity \rightarrow spherical grains

Influence on the dust SED

Log-normal size distribution: $a_{min} = 0.01 \ \mu$ m, $a_{max} = 10 \ cm$ and variable a_0

Why is it important to determine the grain composition ? And not only their size

• Mass estimates based on modified blackbody fits for dense ISM regions

- Holecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 Houng stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)
- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - **b** pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 2: fixed κ value with fixed β
 μ any dust model from the litterature

Dust composition

Absorption and scattering efficiencies

Mix 1 ~ compact AMM Mix 1:50 ~ AMM Mix 1:ice ~ compact AMMI

Mix 3 & Mix 3:ice ~ Pollack (1994)

a-Sil \rightarrow THEMIS amorphous silicates a-C \rightarrow THEMIS Eg = 0.1 eV a-C:H \rightarrow THEMIS Eg = 2.5 eV Mix 1 \rightarrow 2/3 aSil + 1/3 a-C Mix 2 \rightarrow 2/3 aSil + 1/3 a-C:H Mix 1:50 \rightarrow porous Mix 1 ~ AMM Mix 1:ice \rightarrow Mix 1 with an ice mantle Mix 3 \rightarrow 20% a-Sil + 80% a-C Mix 3:ice \rightarrow Mix 3 with an ice mantle

Dust composition

Mass absorption coefficients at 1.3 mm

Grain structure

Why is it important to determine the grain composition ? And not only their size and composition

Mass estimates based on modified blackbody fits for dense ISM regions
 Implementation and the set of the se

- 4 young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)
- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - 4 pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 3
 Guide problem

Mass absorption coefficients at 500 μ m

- Dust evolution gradual across all phases
 - \rightarrow BUT biggest changes occur for A_V ~ 3 or n_H ~ a few 1000 H/cm³
- When ice features start being detected
 - \rightarrow increase in R_v
 - \rightarrow flattening of the mid-IR extinction
 - \rightarrow disappearance of the smallest grains
 - \rightarrow increase in scattering efficiency
 - \rightarrow increase in λ_{max}
 - \rightarrow decrease in P/I
 - \rightarrow increase in depletion
- When modelling dust evolution, many parameters of equal importance
 - composition
 - material "mixture"
 - size distribution
 - grain shape
- No model can reproduce all the variations at once