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FROM OBSERVATIONS TO GRAIN PROPERTIES
A few constraint examples



  

From observations to grain properties

What do we have to constrain the grain properties ?

● Depletion measurements + X-ray  composition→

● Extinction)

E(B-V) = AB – AV    &    RV = AV / E(B-V)
mid-IR silicate bands at ~ 10 and 18 mμ

● Emission)

mid-IR to far-IR ratio)

modified BB fit → Iν = NH σ 0ν  Bν(T) ( /ν ν0)
β

optical depth  → τ 0ν  = NH σ 0ν

● Scattered light from visible to mid-IR  size→

● Polarisation
λmax   peak wavelength of starlight polarisation→

P/I  polarisation fraction in far-IR/submm→
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Grain composition, abundance, size, shape...
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● Sample
24 G0-M4 III stars behind dark clouds
Chameleon, Serpens, Taurus
Barnard 68, Barnard 59, IC 5146

● Normalisation to K band at 2.2 m (2MASS)μ

● Observational results for AK > 0.5 (⇔ AV ~ 4)
extinction curve flattening
widening of both bands
BUT peak positions unchanged
variations correlated with ice features
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Variations in the silicate mid-IR features
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Grain size cannot exceed ~ 1 mμ
Carbon accretion ?
Carbon and ice accretion ?
From isolated grains to icy aggegates ?

  → widening only of the 18 μm band

A few observational constraints



  

● Increase in RV with AV

● Increase when water ice features are detected

↳ Grain growth associated to ice accretion

Taurus dark clouds

no ice              ice

AV

R
V

Variations in total-to-selective extinction RV

       Whittet et al. (2001) Campeggio et al. (2007)

AV

R
V

Dark globule CB 107

A few observational constraints



  

Taurus 
molecular 

cloud

L1506
filament

IRAS 100 mμ

● No emission in from the mid-IR to ~ 70 mμ
 → small grains disappear from the diffuse to the dense ISM

 ↳ Small grain accretion onto larger grains  grain growth→

IRAS 12 mμ

Variations in the mid- to far-IR SED
Stepnik et al. (2003)

A few observational constraints



  

 Visible extinction vs. far-IR SED
Ysard et al. (2013)

● Aggregates for 1000 < nH < 2000 H/cm3

 → AV ~ 2 to 4

● Same as increase in RV, ice features, mid-IR silicate bands Herschel, SPIRE 250

Ysard et al. (2013) 

A few observational constraints

 → Grain growth
 → From isolated grains to aggregates



  

● Observations of 6 nearby anti-centre clouds

● Usual behaviour of dense cloudss

 → Tdust ➘
 → τsubmm/FIR and  β ➚ 
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A few observational constraints

Variations in the far-IR SED
Rémy et al. (2017, 2018)

● Gradual evolution across phasess

significant in DNMs

stronger in CO 

Grain growth
From isolated grains to aggregates
Carbon accretion ? DCD-TLS ?



  

L1507

L1544

L1529

L1521E

L1262 L1746

L1517

L1521F

L183

L260 L1498

L1552

L43

L1251A

L1157

● In the visible: 30’s
Struve & Elvey (1936)

● In the near-IR: 90’s
Witt et al. (1994)

● In the mid-IR: 2010
Pagani et al. (2010)

● Albedo and asymmetry parameter
Mattila (1970ab, 2018)

● Scattering by bigger grains than in 
the diffuse ISM

Steinacker et al. (2010)
Lefèvre et al. (2014)

3.6 mμ 8 mμ 3.6 mμ 3.6 mμ8 mμ 8 mμ

A few observational constraints

Variations in the dust scattering efficiency
Cloud- & Core-shine

Grain growth



  

A few observational constraints

Variations in the dust scattering efficiency
Andersen et al. (2014) & Ysard et al. (2016)

Malinen’s data

THEMIS model

J map of TMC-1N

● Andersen et al. (2014)
 → common density threshold for

→ coreshine & ice feature at 3 mμ

● Ysard et al. (2016)
need for aggregates when 1000 < nH < 2000 H/cm3

 → AV ~ 2 to 4 (ic
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Grain growth
Aggregates?
Ice accretion ?
Carbon accretion ?



  

● Linear polarisation of starlight in the visible
 → λmax proportional to aligned <grain size>

● Increase in λmax & decrease in pmax/E(B-V) in dense clouds
 → threshold around AV = 3-4

 ↳ Grain growth

Patat et al. (2010): diffuse ISM

λmax ~ 0.55 mμ
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Wang et al. (2017): dark cloud IC5146
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A few observational constraints

Variations in the visible starlight polarisation
Vaillancourt et al. (2020)

Il’in et al. (2018): Barnard 5
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A few observational constraints

Variations in dust polarisation
Fanciullo et al. (2017), Juvela et al. (2018)

● Lower polarisation fraction P/I than in diffuse ISM
 → sharp drop above NH ~ 2×1022 H/cm2

● Decrease in efficiency of grain alignement with the magnetic field

● Fanciullo et al. (2017): P/p to constrain grain properties
 → increase in size not enough => structure, composition

Juvela et al. (2018): massive IRDC G035.39-00.33

Grain growth to 0.8 – 1 mμ  
Aggregates?
Ice accretion ?



  

GRAIN SIZE DETERMINATION
Effects of grain structure



  

● Broader features than in the diffuse ISM

● Lower constrast with continuum

 ⇨ significant grain growth ?

Structure effect on size determination

Exemple: silicate mid-IR features
McClure (2009)  observations→
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aggregate
volume equivalent 
compact sphere
equivalent porous 
sphere

amorphous ‘’olivine’’
monomer radius a0 = 0.4 mμ

Structure effect on size determination

Exemple: silicate mid-IR features
Min et al. (2016)  fractal dimension→



  

True size of the aggregate ( mμ )

Si
ze

 w
he

n 
fit

tin
g

 a
g

gr
eg

at
e 

fe
at

ur
es

w
ith

 c
om

pa
ct

 s
ph

er
es

 (
m

)
μ

sizes UNDERestimated when using compact spheres
sizes OVERestimated when using porous spheres

0 2 4 64
0

2

4

6

Structure effect on size determination

Exemple: silicate mid-IR features
Min et al. (2016)  fractal dimension→



  

● Amorphous olivinee

● Aggregates with Df = 2.5
● Three monomer shapes: spheres, oblates, prolatess 
● Four monomer sizes: a0 = 0.05, 0.1, 0.5, and 1 mμ
● Porous monomers: 20% of vacuum

Structure effect on size determination

Exemple: silicate mid-IR features
Ysard et al. (2018)  monomers→



  

10 m featureμ
peak position

10 m featureμ
width

18 m featureμ
peak position

18 m featureμ
width

κ10/κ18

Very difficult to determine grain shapes and sizes from the mid-IR features only

Isolated grains Aggregates

aV ( m)μ aV ( m)μ

Structure effect on size determination

Exemple: silicate mid-IR features
Ysard et al. (2018)  monomers→



  

CLOUD MASS DETERMINATION
Effects of size distribution & grain composition

 → following figures based on Ysard et al. (2018, 2019)



  

● Mass estimates based on modified blackbody fits for dense ISM regionsn

 ↳ molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 ↳ young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

● Assume a dust opacity at a given wavelengthn 
 ↳ pb. 1: depends on grain size distribution
 ↳ pb. 2: depends on grain composition
 ↳ pb. 3: depends on grain structure
 ↳ pb. 4: depends on temperature distribution

Size distribution

Many mass estimates based on MBB fits



  

● Classical choice for pb. 1: power-law size distributionn

 ↳ Weidenschilling (1997)
 ↳ Natta & Testi (2004)
 ↳ Draine (2006)
 ↳ ...

What do the latest laboratory experiments tell us?

Why is it important to determine n(a) ?
And not only amax

● Mass estimates based on modified blackbody fits for dense ISM regionsn

 ↳ molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 ↳ young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

● Assume a dust opacity at a given wavelengthn 
 ↳ pb. 1: depends on grain size distribution
 ↳ pb. 2: depends on grain composition
 ↳ pb. 3: depends on grain structure
 ↳ pb. 4: depends on temperature distribution

Size distribution



  

● Modelling questions

 ↳ shape of the size/mass distribution?
 ↳ amin? amax?

● Solution based on lab: Lorek et al. (2018)s

 ↳ local growth of grains in discs
 ↳ mass distribution

● Laboratory inputss

 ↳ Güttler et al. (2010)
 ↳ Windmark et al. (2012)s

 ↳ Güttler et al. (2010)
 ↳ Blum & Wurm (2008)
 ↳ Gundlach et al. (2011)
 ↳ Gundlach & Blum (2015)s

 ↳ Güttler et al. (2009)
 ↳ Weidling et al. (2009)
 ↳ Landeck (2016)

outcomes of grain-grain collisions ( v, aΔ projectile, atarget ): 
sticking, bouncing, fragmentation, erosion, mass transfer

sticking properties of water ice and silicate monomers

bouncing of aggregates rather than just compact grains

● Model of Lorek et al. (2018)s

 ↳ monomer size (0.1 or 1 m)μ
 ↳ radial position in the disk
 ↳ turbulence
 ↳ gas surface density...

pebble sizes in agreement with pebbles on comet
67P/Churyumov-Gerasimenko (Poulet et al. 2016)

Size distribution

Coagulation model based on laboratory results



  strong departure from a classical power-law size/mass distribution

0.1 m monomersμ
dust-to-ice ratio = 5
Rdisc = 30 AU
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Coagulation model based on laboratory results

● Modelling questions

 ↳ shape of the size/mass distribution?
 ↳ amin? amax?

● Solution based on lab: Lorek et al. (2018)s

 ↳ local growth of grains in discs
 ↳ mass distribution



  

Power-law size distribution        Log-normal size distribution
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In both cases: amin = 0.01 m, aμ max= 10 cm, Mgas/Mdust = 100
In both cases: 2/3 silicate + 1/3 amorphous carbon + 50% porosity  spherical grains→
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amax = 0.1 mμ
amax = 1 mμ
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amax = 100 mμ
amax = 1 mm
amax = 1 cm
amax = 10 cm

a0 = 0.1 mμ
a0 = 1 mμ
a0 = 10 mμ
a0 = 100 mμ
a0 = 1 mm
a0 = 1 cm

Size distribution

Influence on the dust opacity in the millimetre
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In both cases: amin = 0.01 m, aμ max= 10 cm, Mgas/Mdust = 100
In both cases: 2/3 silicate + 1/3 amorphous carbon + 50% porosity  spherical grains→
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Size distribution

Log-normal size distribution: amin = 0.01 m, aμ max= 10 cm and variable a0

Power-law size distribution: p = -3.5 with amax = 1 mμ  
Power-law size distribution: p = -3.5 with amax = 10 cm
Power-law size distribution: p = -2 with amax = 10 cm 

Influence on the dust SED



  

● Mass estimates based on modified blackbody fits for dense ISM regionsn

 ↳ molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 ↳ young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

● Assume a dust opacity at a given wavelengthn 
 ↳ pb. 1: depends on grain size distribution
 ↳ pb. 2: depends on grain composition
 ↳ pb. 3: depends on grain structure
 ↳ pb. 4: depends on temperature distribution

Dust composition

Why is it important to determine the grain composition ?
And not only their size

● Classical choice for pb. 2: fixed  value with fixedκ  β n

 ↳ any dust model from the litterature



  

Mix 1 ~ compact AMM
Mix 1:50 ~ AMM
Mix 1:ice ~ compact AMMI

Mix 3 & Mix 3:ice ~ Pollack (1994)

a-Sil THEMIS amorphous silicates→
a-C THEMIS Eg = 0.1 eV→
a-C:H THEMIS Eg = 2.5 eV→
Mix 1  2/3 aSil + 1/3 a-C→
Mix 2  2/3 aSil + 1/3 a-C:H→
Mix 1:50 porous Mix 1 ~ AMM→
Mix 1:ice Mix 1 with an ice mantle →
Mix 3  20% a-Sil + 80% a-C→
Mix 3:ice Mix 3 with an ice mantle→

Mix 1 Mix 1:50

Mix 1:ice

a = 0.1 
mμ

to 10 cm 

Dust composition

Absorption and scattering efficiencies



  
Mgas
Mdust

= 100

× 3× 10

Mass absorption coefficients at 1.3 mm

Dust composition
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Why is it important to determine the grain composition ?
And not only their size and composition

● Mass estimates based on modified blackbody fits for dense ISM regionsn

 ↳ molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 ↳ young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

● Assume a dust opacity at a given wavelengthn 
 ↳ pb. 1: depends on grain size distribution
 ↳ pb. 2: depends on grain composition
 ↳ pb. 3: depends on grain structure
 ↳ pb. 4: depends on temperature distribution

● Classical choice for pb. 3
↳ignore the problem

Grain structure
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Conclusion

● Dust evolution gradual across all phases
 → BUT biggest changes occur for AV ~ 3 or nH ~ a few 1000 H/cm3

● When ice features start being detected
 → increase in RV

 → flattening of the mid-IR extinction
 → disappearance of the smallest grains
 → increase in scattering efficiency
 → increase in λmax

 → decrease in P/I
 → increase in depletion

● When modelling dust evolution, many parameters of equal importance
- composition
- material “mixture”
- size distribution
- grain shape

● No model can reproduce all the variations at once
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