Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Le Soleil est-il une étoile chimiquement particulière?

POCI-01-0145-FEDER-030389

Morgan Deal, IA, Porto

Lithium: Star-planet(s) connection? mpact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

→ PP chain

•••

- → CNO cycle
- → Proton capture
- \rightarrow

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

Accretion/Formation

→ PP chain

...

- → CNO cycle
- → Proton capture
- \rightarrow

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

→ PP chain

...

- → CNO cycle
- → Proton capture
- \rightarrow

Accretion/Formation

- → From a companion
- → Planet engulfment
- → Protoplanetary disk

 \rightarrow

...

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

Internal transport

Accretion/Formation

→ PP chain

...

- → CNO cycle
- → Proton capture
- \rightarrow

- → From a companion
- → Planet engulfment

 \rightarrow

...

→ Protoplanetary disk

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

Internal transport

Accretion/Formation

→ PP chain

•••

- → CNO cycle
- → Proton capture
- \rightarrow

- → Convection
- → Rotation induced mixing
- → Atomic diffusion

 \rightarrow

...

- → From a companion
- → Planet engulfment
- → Protoplanetary disk

→

...

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

What can affect chemical elements in main-sequence stars?

Nuclear reactions

Internal transport

Accretion/Formation

→ PP chain

...

- → CNO cycle
- → Proton capture
 →

→ Convection

...

 \rightarrow

- → Rotation induced mixing
- → Atomic diffusion

- → From a companion
- → Planet engulfment
- → Protoplanetary disk

→

...

Star-planet(s) connection?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

 $T_{eff} = T_{\odot} \pm 300K$

Thick disk Thin disk high-a metal-rich stars Halo stars

Adibekyan et al. 2012

Star-planet(s) connection?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

 $T_{eff} = T_{\odot} \pm 300K$

Thick disk Thin disk high-a metal-rich stars Halo stars

Adibekyan et al. 2012

Star-planet(s) connection?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Journées de la SF2A - S11 - 9th of June 2022

Star-planet(s) connection?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Star-planet(s) connection?

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Delgado-Mena et al. 2021

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Star/planet(s) connection?

→ 6% of the solar twin are more deficient in refractories than the Sun (Bedell et al. 2018)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

- → 6% of the solar twin are more deficient in refractories than the Sun (Bedell et al. 2018)
- → Refractories deficient due to giant planet formation (Booth & OWen 2020)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

- → 6% of the solar twin are more deficient in refractories than the Sun (Bedell et al. 2018)
- → Refractories deficient due to giant planet formation (Booth & OWen 2020)
- → 8% of the systems have Jupiter mass planets (TBD)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

- → 6% of the solar twin are more deficient in refractories than the Sun (Bedell et al. 2018)
- → Refractories deficient due to giant planet formation (Booth & OWen 2020)
- → ~7% of the systems have Jupiter analogs (Wittenmyer et al. 2016)
- → Stars with planets are more metallic (e.g. Santos et al. 2004)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

- → 6% of the solar twin are more deficient in refractories than the Sun (Bedell et al. 2018)
- → Refractories deficient due to giant planet formation (Booth & OWen 2020)
- → ~7% of the systems have Jupiter analogs (Wittenmyer et al. 2016)
- → Stars with planets are more metallic (e.g. Santos et al. 2004)
- → Planet engulfments/accretion
 - 1/4 of solar like stars (Spina et al. 2021)
 - Better solar models (Kunitomo & Guillot 2021)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

A&A 519, A87 (2010) DOI: 10.1051/0004-6361/201015137 © ESO 2010

Lithium depletion in solar-like stars: no planet connection

P. Baumann¹, I. Ramírez¹, J. Meléndez², M. Asplund¹, and K. Lind³

- ¹ Max Planck Institute for Astrophysics, Postfach 1317, 85741 Garching, Germany e-mail: [pbaumann, ivan, asplund]@mpa-garching.mpg.de
- ² Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: jorge@astro.up.pt
- ³ European Southern Observatory(ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany e-mail: klind@eso.org

Received 2 June 2010 / Accepted 24 June 2010

Lithium: Star-planet(s) connection?

Impact of accretion: the 16 Cyg case

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Solar-like stars

→ Atomic diffusion (without radiative accel.)

→ Rotation

- → Penetrative convection
- → Additional turbulence (to account for missing processes)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Pop. II stars

- → Atomic diffusion (without radiative accel.)
- → Rotation
- → Penetrative convection

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

A&A 562, A92 (2014) DOI: 10.1051/0004-6361/201321493 © ESO 2014

Li depletion in solar analogues with exoplanets Extending the sample***

E. Delgado Mena¹, G. Israelian^{2,3}, J. I. González Hernández^{2,3}, S. G. Sousa^{1,2,4}, A. Mortier^{1,4}, N. C. Santos^{1,4}, V. Zh. Adibekyan¹, J. Fernandes⁵, R. Rebolo^{2,3,6}, S. Udry⁷, and M. Mayor⁷

Delgado-Mena et al. 2014

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Abundances of the Sun: Heavy elements Star-planet(s) connection?

Delgado-Mena et al. 2014

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Spina et al. 2021

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

→ 16 Cygni system :

- binary system (A and B)
- solar type stars
- same initial chemical composition
- same age
- A hosts a red dwarf
- B hosts a planet

	16 Cyg A	16 Cyg B
Mass (M _o)	1.11 ± 0.02	1.07±0.02
T _{eff} (K)	5813±18	5749±17
Log g	4.282 ± 0.017	4.328 ± 0.017
planet(s)	no	yes
A(Li)	1.27 ± 0.05	<u><</u> 0.60
A(Be)	0.99 ± 0.08	1.06 ± 0.08

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

16 Cyg B

 1.07 ± 0.02

5749±17

4.328±0.017

yes < 0.60

 1.06 ± 0.08

-			16 Cyg A
→	16 Cygni system :	Mass (M _o)	1.11 ± 0.02
	 binary system (A and B) 	T _{eff} (K)	5813±18
	 solar type stars same initial chemical composition same age 	Log g	4.282±0.017
		planet(s)	no
		A(Li)	1.27 ± 0.05
	 A nosts a red dwarr B hosts a planet 	A(Be)	0.99±0.08

- → Ramirez et al. 2014: [Fe/H] seems slightly larger in 16 Cyg A (other authors find both stars with similar [Fe/H], e.g. Schuler et al. 2011)
 - Accretion of lithium rich planetary matter on 16 Cyg A

Impact of accretion: the 16 Cyg case

→	16 Cygni system :		16 Cyg A	16 Cyg B
		Mass (M _o)	1.11 ± 0.02	1.07±0.02
	 binary system (A and B) 	T _{eff} (K)	5813±18	5749±17
	 solar type stars 	Log g	4.282 ± 0.017	4.328±0.017
	 same initial chemical composition 	planet(s)	no	yes
	• same age	A(Li)	1.27 ± 0.05	<u><</u> 0.60
• An	 A nosts a red dwarf B hosts a planet 	A(Be)	0.99±0.08	1.06±0.08

- Ramirez et al. 2014: [Fe/H] seems slightly larger in 16 Cyg A (other authors find both stars \rightarrow with similar [Fe/H], e.g. Schuler et al. 2011)
 - Accretion of lithium rich planetary matter on 16 Cyg A
- Deal et al. 2015: Accretion of planetary matter on 16 Cyg B \rightarrow

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

→ Thermohaline convection

Garaud 2014

- unstable mean molecular weight gradient
- stable temperature gradient

Apply on stellar cases : Planetary matter accretion, elements accumulation due to radiative accelerations, evolved stars, ...

Lithium: Star-planet(s) connection?

Impact of accretion: the 16 Cyg case

Deal, Richard & Vauclair 2015 (see also 2021 for CEMP-s stars)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Deal, Richard & Vauclair 2015 (see also 2021 for CEMP-s stars)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Deal, Richard & Vauclair 2015 (see also 2021 for CEMP-s stars)

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Journées de la SF2A - S11 - 9th of June 2022

Lithium: Star-planet(s) connection? Impact of accretion: the 16 Cyg case

Conclusions

- → The Sun is chemically similar to the thin disk solar-like stars for the heavy elements
- → Possible distinction between stars hosting or not a planetary system (formation/engulfment)
- → Possible connexion between lithium and the presence of planets
- → Important impact of the transport of chemical/angular momentum on lithium surface abundances ...
- → ... also in the presence of accretion/engulfment

Is the Sun chemical peculiar?

→ Still an open question! but depend on the definition of 'peculiar'