NON-RESONANT PARTICLE ACCELERATION IN
STRONG TURBULENCE: COMPARISONTO
NUMERICALSIMULATIONS
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PARTICLE ACCELERATION TO EXTREME ENERGIES
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FERMI-II ACCELERATION

+ Particles are accelerated by electric fields
- Interstellar medium (ISM) almost a perfect conductor, (E) = 0
BUT a time varying magnetic field induces electric fields { V x E 0B
AND a pure magnetic field transforms in a magnetic + electric field in another
reference frame moving relative to it by Lorentz transform

Fermi in 1949: ISM is filled with "clouds" of ionized gas, in
movement with respect to the "Galactic frame”, ables to
accelerate on average particles encountering them

l

Stochastic acceleration «—> Diffusion in momentum space
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QUASI LINEARTHEORY (QLT)

- Alfvén waves

Sum of linear eigenmodes of the plasma:

- Fast & slow magnetosonic modes

First-order perturbation theory: small amplitude limit of fluctuations
Uncorrelated fluctuations

Particles followed on unperturbed orbits }-

Resonant wave-particle interactions
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QUASI LINEARTHEORY (QLT)

Sum of linear eigenmodes of the plasma:

- Alfvén waves

- Fast & slow magnetosonic modes

- Resonant wave-particle interactions
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GENERALIZED FERMIACCELERATION

Original Fermi picture of discrete interaction with fluctuating E fields connected to random velocity fluctuations
point-like interactions <—> Dbyideal Ohm’s Law
Not uniform Gradients of the velocity field:
- Shear along field velocities
\l, - Compression/expansion
There non exists a global frame - Vorticity

where E = 0, but different frames %, - Acceleration of the velocity field

moving at up x Ex B

o /

PARTICLE ACCELERATION

by inertial forces induced by the
varying velocity fluctuations as E
vanishes in %
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GENERALIZED FERMIACCELERATION

Original Fermi picture of discrete interaction with fluctuating E fields connected to random velocity fluctuations
point-like interactions <—> Dbyideal Ohm’s Law
Not uniform Gradients of the velocity field:
- Shear along field velocities
\I/ - Compression/expansion
There non exists a global frame - Vorticity o
follows particles in different £ frames: where E = 0, but different frames %, - Acceleration of the velocity field

moving at up x Ex B

Ideal MHD, frame where the E-field vanishes
coincides with the plasma bulk rest frame \ ‘/

Fluctuations on scale < gyroradius ignored
PARTICLE ACCELERATION

+ Local gyromotion around B-field lines
by inertial forces induced by the

varying velocity fluctuations as E

1dy' 1 ishes in &
In . 22— A uar b —uPO, — —u? vanishes in %
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Velocity shear along the
Effective gravity along the field line Compression in the plane

field line transverse to the field line

Refs.: Lemoine 19, Lemoine '21
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COMPARISON WITH NUMERICAL SIMULATIONS - METHOD
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COMPARISON WITH NUMERICAL SIMULATIONS - METHOD

Magnetic energy density
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COMPARISON WITH NUMERICAL SIMULATIONS - RESULTS

Degree of correlation between observed and
reconstructed particle trajectories from velocity
gradients:
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CONCLUSION

+  Non-resonant model of acceleration: all energy gains or losses are related to inertial forces deriving from the non-
inertial nature of the frame where the motional electric field vanishes

* Reconstruction of the particle energy evolution due to the velocity gradient of the non-inertial frame to lowest
order in the ratio /£, neglecting fluctuations on scales much lower than the particle gyroradius

+ Comparison with test particles energy evolution
« Clear correlation between the two histories in both 2D and 3D PIC simulations and 3D MHD simulations

—> non-resonant model can account for the bulk of particle energisation through stochastic Fermi processes, in
particular, longitudinal shear term is the dominant contribution in PIC and mirroring effects slightly prevail in MHD
(physic of acceleration depends on how turbulence is stirred)

VB, M. Lemoine, L. Gremillet, C.
Demidem, L. Comisso, L. Sironi:
“Particle acceleration in strong
turbulence: comparison to kinetic
and MHD simulations”
submitted (2022)

* Analytical prediction of the accelerated spectrum?
 Radiative spectra from inhomogeneous fast-moving structures?
* Interplay of turbulence and shock fronts?
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