

Observable signatures of plasmoid-dominated magnetic reconnection in relativistic astrophysical plasmas

Collaborators :

France

I. C. Andaç (Grenoble & Istanbul), B. Crinquand (Princeton), G. Dubus (Grenoble), I. El Mellah (Grenoble), K. Y. Ekşi (Istanbul), G. Giacinti (Heidelberg), K. Parfrey (Dublin), A. Philippov (Maryland).

SF2A 2022, 7-10 juin, Besançon.

Reconnection : A change of magnetic topology

[See reviews by Zweibel & Yamada, 2009, Kagan et al. 2015]

Reconnection : A change of magnetic topology

[See reviews by Zweibel & Yamada, 2009, Kagan et al. 2015]

Reconnection : A change of magnetic topology

[See reviews by Zweibel & Yamada, 2009, Kagan et al. 2015]

How fast does reconnection proceed? **Reconnection rate:** $\beta_{rec} = V_{in} / V_{out}$

Magnetic energy =≻ Plasma kinetic energy (heating+non-thermal particles)

Relativistic reconnection at work

$$\sigma = \frac{B_0^2}{4 \pi n m c^2}$$

Relativistic reconnection: $\sigma > \sim 1$

Relativistic Alfvén speed

$$V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c$$

Dissipation of magnetic energy => relativistic particles !

$$\sigma = \frac{B_0^2}{4 \pi n m c^2}$$

Relativistic reconnection: $\sigma > \sim 1$

Relativistic Alfvén speed $V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c$

Dissipation of magnetic energy => relativistic particles !

Pulsars, BH magnetospheres

Possible astrophysical applications:

Pulsar Wind Nebulae

σ~0.1-1

Collisionless reconnection layer

Coulomb collision frequency << **Plasma frequency**

Length L

A long thin current sheet is tearing unstable

[Zelenyi & Krasnoselskikh 1979 ; Zenitani & Hoshino (2007) ; Pétri & Kirk 2007]

Reconnecting Harris layer (2D PIC simulation) Inverse cascade : Hierarchical merging process

$\underset{\mathbb{N}_{0}}{\text{Hierarchical merging model}}$

Assumptions:

- Incompressible
- Identical circular islands
- No secondary islands
- Constant reconnection rate

Assumptions:

- Incompressible
- Identical circular islands
- No secondary islands
- Constant reconnection rate

Putting the model to the test : Harris layer

Bogovalov 1999

Bogovalov 1999

Bogovalov 1999

I. Pulsar wind current sheet

3D PIC simulations

Tearing unstable !

e.g., Cerutti & Philippov 2017 Cerutti et al. 2020

Hu & Beloborodov 2022

Equatorial cut

Cerutti & Philippov (2017); Andaç et al. (2022)

Subpulses induced by plasmoid formation

High-energy pulsed emission from the current sheet

Andaç et al. 2022

Bogovalov 1999

II. Pulsar wind nebula current sheet

3D PIC simulations

Cerutti & Giacinti 2021

Plasma density evolution $ct/r_{min} = 0.00$

Origin of the Crab Nebula inner ring knots?

Final number of islands: $N_f \approx \pi \beta_{\rm rec}^{-1} \approx 30 \beta_{{\rm rec},0.1}^{-1} islands$

« The X-ray ring itself is composed of roughly <u>two dozen knots</u> that are highly variable but roughly stationary » [Hester 2008]

Simulated synchrotron power

III. Kerr black hole magnetospheres

3D GRPIC simulations

3D GRPIC simulations

Spinning horizon-scale features : hot spots

Prediction for future EHT observations ?

Crinquand et al. (2022)

Black hole coronal heating, SgrA* flare & hot spot ?

El Mellah et al. (2022)

Summary

- Relativistic reconnection is **fast** and **accelerates** particles
- Plasmoid formation & hierarchical merging process connects micro to macro scales
- <u>Giant plasmoids may be observables</u> where large-scale current sheets form : e.g., pulsars, pulsar wind nebulae, black hole magnetospheres

=> Reconnection smoking gun ?

