Intermittent structures in solar wind turbulence from MHD to sub-ion scales at 0.17 AU from the Sun

> Vinogradov Alexander LESIA

Alexandrova O., Maksimovic M., Artemyev A.V., Mangeney A., Vasilyev A., Karine Issautier, Michel Moncuquet, Petrukovich A.

23-05-2022

Solar wind turbulence

Structures in the solar wind

Inertial range

	F-1 range:	Flux ropes [Zhao 2020],[Janvier 2014]
		Flux tubes [Borovsky2008]
	Inertial range:	Discontinuities [Knetter 2004],
		Magnetic holes [Stewens2007], [Karlsson 2021]
		Alfven vortex [Lion 2016]
	Ion scales:	Discontinuities, shocks, magnetic holes,
		Alfven vortices [Perrone 2016, 2017]
	Sub-ion range:	Discontinuities [Perri 2012], [Greco 2016]
		Magnetic hole [Liu 2019]
Is there a relation		tion between all these structures across the
	cascade?	

F⁻¹ range Flux rope

Burlaga 1990

Alfvénic-type magnetic structure

Parker Solar Probe First encounter: 2018-11-06

Unique opportunity exploring the turbulence in the "young" solar wind Radial distance R~25*10⁹ m ~ 0.17 au
The main goal of our investigation is to characterize solar wind coherent structures from MHD to sub-ion scales

ES Solar Orbiter Solar Orbiter

Earth

Venus

Parker Solar Probe

STEREO-A

Mercury

Sun

Detection of coherent structures at 0.17 AU

- Morlet Wavelet
- Total local intermittency measure $I(t,\tau)_{tot}$ shows the relative total energy of fluctuations at a given moment in time at a given scale τ

$$I(t,\tau)_{tot} = \frac{\sum_{i=R,T,N} |W[B_i](t,\tau)|^2}{\langle \sum_{i=R,T,N} |W[B_i](t,\tau)|^2 \rangle_{t \in T'}}$$

- To detect the structures we compare magnetic field measurements with an random-phased signal
- Vertical lines: coupled phases across scales -> Coherent structures

Reference frames

Ecliptic plane

Local Minimum variance (MVA) Reference frame

e₁,e₂,e₃ are eigenvectors of the magnetic field covariation matrix

Relations of the corresponding eigenvalues λ_2/λ_1 , λ_3/λ_2 show if **e**₁,**e**₂,**e**₃ directions are well-defined

Two examples of coherent structures across cascade

- Small scale events are substructure of large scales ?
- We observe a large number of small scale events within a large scale structure.
- Topology of the observed events depends strongly on the satellite trajectory.

Simulation of coherent structures crossings

 λ_1 – maximum variation λ_2 – intermediate variation λ_3 – minimum variation

Dipole Vortex ~ RD

Statistics: 600 structures for 6h of observation

MVA eigenvalue ratios λ_2/λ_1 , λ_3/λ_2 allow to distinguish between different types of structures:

- Upper left area tangential discontinuities/magnetic holes
- Lower elongated rectangle monopole Alfven vortices
- Area at the zero vicinity rotational discontinuities/dipole vortex

So we have:

- MHD: rotational discontinuities and vortices dominate
- ion scales: RD & increasing population of vortices

- The population of tangential discontinuities/magnetic holes increases towards the smallest scales.

Conclusion

- We observe solar wind coherent structures from MHD to ion kinetic scales and below.
- We try to determine topology of the structures using minimal variance analysis applied on the data and on the model structures.
- We observe evolution of the topology of magnetic fluctuaitons from MHD to sub-ion scales.

Range of scales	Possible dominant type of structures
MHD Inertal range	Rotational discontinuities/Dipole vortex
lon scales	Alfven vortexes & rotational discontinuities
Sub-ion scales	Tangential discontinuities/ Magnetic holes