Spin-down of radiative stars by magnetic dynamo

Christophe Gissinger, Florence Marcotte, Ludovic Petitdemange

Abstract

Recent asteroseismology observations have shown that rotation profiles of most stars are significantly flatter than expected, especially in the radiative region. This suggests the existence of an unknown and powerful mechanism that extracts angular momentum from the stellar core to its outer parts. But in stably- stratified, radiative layers, angular momentum transport is difficult to account for in the absence of a clear source of turbulence.

In this poster, I will describe global numerical simulations aimed at modeling a radiative stellar layer. For some parameters, we report the existence of a subcritical transition to turbulence due to the generation of a magnetic dynamo, very similar to the (never observed) Tayler-Spruit model. This regime significantly enhances transport in radiative zones, leading to a drastic spin-down of the inner part of the star. Because the magnetic field is mostly hidden in the deep regions of the star, these results predict the existence of intense magnetism in radiative stars where no magnetic fields could be directly observed so far.

Email adress: gissinger@ens.fr Affiliation: Ecole Normale Superieure, Paris, France

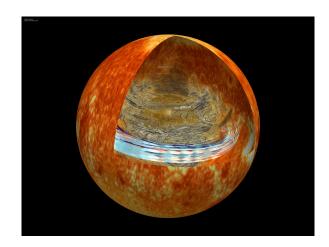


Figure 1: Turbulence and magnetic field generated in the radiative star.